1

Assignment 2

Hand in no. 2, 5, 6, 8 and 9 by September 19, 2019.

- 1. Find the Fourier series of the function $|\sin x|$ on $[-\pi, \pi]$.
- 2. Show that

$$x^{2} \sim \frac{4\pi^{2}}{3} + 4\sum_{n=1}^{\infty} \frac{\cos nx}{n^{2}} - 4\pi \sum_{n=1}^{\infty} \frac{\sin nx}{n},$$

for $x \in [0, 2\pi]$. Here we extend x^2 which is originally defined on $[0, 2\pi]$ to a 2π -periodic function on \mathbb{R} . Compare it with 4(a) in Assignment 1.

- 3. This is an optional problem.
 - (a) Assume that the Fourier coefficients of a continuous, 2π -periodic function vanish identically. Show that this function must be the zero function. Hint: WLOG assume f(0) > 0. Use the relation

$$\int_{-\pi}^{\pi} f(x)p(x)dx = 0,$$

where p(x) is a trigonometric polynomial of the form $(\varepsilon + \cos x)^k$ for some small ε and large k > 0.

- (b) Use the result in (a) to show that if the Fourier series of a continuous, 2π -periodic function converges uniformly, then it converges uniformly to the function itself.
- (c) Apply (b) to the Fourier expansion of x^2 to show that

$$\frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}.$$

- 4. Let f be a complex valued 2π -periodic function whose derivative is again integrable on $[-\pi, \pi]$. Show that c_n and c'_n , the Fourier coefficients of f and f' respectively, satisfies the relation $c'_n = inc_n, n \in \mathbb{Z}$. Do not do it formally. Use the definition of the integration of complex valued functions.
- 5. Let $C_{2\pi}^{\infty}$ be the class of all smooth 2π -periodic, complex-valued functions and \mathcal{C}^{∞} the class of all complex bisequences satisfying $c_n = \circ(n^{-k})$ as $n \to \pm \infty$ for every k. Show that the Fourier transform $f \mapsto \hat{f}$ is bijective from $C_{2\pi}^{\infty}$ to \mathcal{C}^{∞} . Hint: You need to apply those theorems on uniform convergence in MATH2060.
- 6. Propose a definition for $\sqrt{d/dx}$. This operator should be a linear map which maps $C_{2\pi}^{\infty}$ to itself satisfying

$$\sqrt{\frac{d}{dx}}\sqrt{\frac{d}{dx}}f = \frac{d}{dx}f,$$

for all smooth, 2π -periodic f.

7. Let f be a continuous, 2π -periodic function and its primitive function be given by

$$F(x) = \int_0^x f(x)dx.$$

Show that F is 2π -periodic if and only if f has zero mean. In this case,

$$\hat{F}(n) = \frac{1}{in}\hat{f}(n), \quad \forall n \neq 0.$$

- 8. Let \mathcal{C}' be the subspace of \mathcal{C} consisting of all bisequences $\{c_n\}$ satisfying $\sum_{-\infty}^{\infty} |c_n|^2 < \infty$.
 - (a) For $f \in R[-\pi, \pi]$, show that

$$\sum_{-\infty}^{\infty} |c_n|^2 \le \int_{-\pi}^{\pi} |f|^2 .$$

- (b) Deduce from (a) that the Fourier transform $f \mapsto \hat{f}(n)$ maps $R_{2\pi}$ into \mathcal{C}' .
- (c) Explain why the trigonometric series

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^{\alpha}} , \quad \alpha \in (0, 1/2] ,$$

is not the Fourier series of any function in $R_{2\pi}$.

- 9. Let f be a C^1 -piecewise, continuous 2π -periodic function. In other words, there exist $-\pi = a_1 < a_2 < \cdots < a_N = \pi$ and C^1 -functions f_j defined on $[a_j, a_{j+1}], \ j = 0, \cdots, N-1$ such that $f = f_j$ on (a_j, a_{j+1}) . Show that its Fourier series converges uniformly to itself. Hint: Let $M = \max_j \{\sup |f'_j(x)| : x \in [a_j, a_{j+1}]\}$. Establish $|f(y) f(x)| \le M|y x|$ for all $x, y \in [-\pi, \pi]$.
- 10. Show that for a Lipschitiz continuous, 2π -periodic function, its Fourier coefficients satisfy

$$|a_n| \le \frac{C\pi}{n}, \quad |b_n| \le \frac{C\pi}{n},$$

for some constant C.